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AbstractPTaylor-Aris dispersion techniques are used in this paper to address a broad class of convective 
and diffusive internal energy transport phenomena in an externally insulated circular cylinder. Expressions 
are derived for the mean axial thermal propagation velocity o* and thermal dispersivity a*. In general, 
these quantities may differ respectively from the average fluid velocity P and the fluid thermal diffusivity 

ur. These generic results apply equally to laminar and turbulent flow systems. 

1. INTRODUCTION 

CONSIDER fully-developed flow in an insulated circular 
cylindrical tube of radius R,, with the fluid mani- 
festing varying thermophysical properties in the cross- 

section (R, 4) of the tube (Fig. 1). It will be assumed 
that the density p(R, $), specific heat capacity c(R, 
4) and thermal conductivity k(R, 4), as well as the 
axial velocity profile lJ(R, c$) are functions, at most, 

of only R and 4 ; specifically, each is assumed to be 
independent of the axial coordinate z (and of the time 
t). Moreover, at each cross-sectional point it will be 
supposed that the thermal properties are non-negative 
definite : 

{p,c,k) > {O,O,O) V(R4). (1) 

Piecewise continuity of the phenomenological func- 
tions p, c, k and U suffices to assure continuity of 
the temperature and heat flux at all points ; we will 
suppose in the subsequent analysis that the pheno- 
menological data fulfill this piecewise continuity 
criterion. 

Initially, the contents of the tube are at a uniform 
temperature r,,. At time t = 0 an amount of heat Q 
is instantaneously added to the tube over some por- 
tion of the infinite domain, 

(0 d R < R,,, 0 < C#J < 2n, -m < z < so). (2) 

Subsequent convection and diffusion of this heat is 
governed by the energy equation, 

governing the temperature distribution T(R, q5, z, t) in 

t Address for correspondence : H. Brenner, MIT, Room 
66-562, Cambridge, MA 02139, U.S.A. 

the domain (2). Boundary conditions imposed upon 

Trequire that, for all times, it : (i) approach the initial 
uniform temperature at large axial positions, 

T+T, as z++co; (4) 

(ii) satisfy the condition of adiabaticity at the outer 

tube wall, 

dT 
a=0 at R= R,,, 

corresponding to the tube wall being insulated on its 
external surface. Additionally, it is required that T 

be single valued and continuous in the 4 direction, 
namely 

T(++2n) = T(4) V (R, z, t). (6) 

Introduction of heat of the amount Q into the sys- 

tem at time t = 0 is quantified by specifying an initial 
temperature distribution, T(R, 4, z, 0), such that 

T = T(R, 4. z, 0) at t = 0, (7) 

in which 

x [WY 4, z, 0) - ToIR dR d4 dz, (8) 

provided that T(R, 4, z, 0) also satisfies (4). 

FIG. 1. Fully-developed velocity field U in a tube into which 
are introduced Q units of heat at time t = 0 within the 
indicated domain. Here, (R, 4, z) denote a system of circular 
cylindrical coordinates originating along the tube axis, with 

i, a unit vector in the axial direction. 
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NOMENCLATURE 

A, cross-sectional area of tube, TCR~ u velocity vector with which heat convects 

B field defined by equations (64))(66) rj mean velocity defined in (59) 

B average of the B-field i? mean thermal propagation velocity 

(’ specific heat capacity 
7 I mean fluid velocity 

n molecular diffusivity I axial coordinate in circular cylindrical 

ii* dispersivity coordinate system. 

cxp denotes terms of exponentially small 

order in time as t + TC Greek symbols 

I, unit vector in the axial direction Y. molecular thermal diffusivity, liipr 

J flux r mean thermal diffusivity defined in 

k thermal conductivity (69).- (76) 

F mean thermal conductivity r* thermal dispersivity 

I?* macroscale thermal conductivity d Dirac delta function 

M,,, rrrth total moment of P &, Kronecker delta 

R,,, rnth total moment of P d, angular coordinate in circular cylindrical 

P Green’s function coordinate system 

:‘I 

nrth local moment of P /’ density 

amount of heat introduced into the pc’ mean volumetric specific heat capacity 

cylinder at time t = 0 pc* macroscale volumetric specific heat 

R radial coordinate in circular cylindrical capacity. 

coordinate system 

R,, outer radius of the cylinder Subscript 

I time /?l index for local and total moments. 

T tcmperdture 

7-0 initial and far-field uniform temperature Superscripts 

T average temperature initial position of impulse 

Ll internal energy density ‘X asymptotic form 

[1 velocity in axial direction with which heat C convective contribution 

convects M molecular contribution. 

Integration of (3) over the entire domain (2), to- x = k/pc), that a coarse-grained version of the thermal 

gether with the use of the boundary and initial con- 
ditions (4)-(8) (and the pre-initial condition that 
T(R, 4.2, t) = T, for all t < 0) shows that the follow- 

ing integral is a conserved quantity for all time : 

I 2n 

sss 

4 
dR 4)4R 4) 

I i, 0 

x[T(R,&r.t)-T,]RdRd&~dz 

-1 0 (f<O). 
_ 

p (t > 0). (9a,b) 
Here, the constant Q denotes the quantity defined in 
(8) in terms of the initial temperature distribution at 
t = 0; that is, owing to the adiabaticity, the amount 
of heat (internal energy) Q originally introduced into 
the system at t = 0 is present in the system for all 
subsequent times t 2 0. 

Subject to a posteriori verification via macro- 
transport theory [l], we speculate that after a 
sufficiently long time, namely 

t >> R;l/I4 
(with (1~ jl some norm of the thermal diffusivity. 

transport process will obey the macrotransport energy 

equation, 

where a*. I? and PC* are time- and position-in- 

dependent constants, respectively representing ap- 
propriate coarse-grained versions of the comparable 
microtransport quantities U, k and pc. In the above, 
T(z, t) (- m < z < z) represents some cross-section- 
ally-averaged temperature (whose explicit functional 
dependence on the microtransport temperature field 
T(R, 4, z. t) remains to be established; cf. equation 
(108)). This field is to satisfy the boundary condition, 

L T,, as z + * -I, (12) 

(where T0 is the constant appearing in (4), repre- 
senting the uniform initial temperature prevailing for 
z < 0). together with the initial condition 

’ [E” 
1. 

[ T(z, 0) - T,,] dz = Q, (13) 
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where Q is the constant defined in (8) in terms of the the formulation, we obtain the following differential 
initial microtranspo~ temperature field T(R, #, z, 0). equation governing P: 

The system of equations (I l)-( 13) combine to show 
that heat is conserved at the macroscale in the sense 
that 

YP= ~s(~-R36(~-V)ri(z--2’)6(1). (19) 

The metrical nature of this equation is such that 
P--rather then depending upon (z, z’) and (4, 4’) 
sepa~dtely-necessarily depends only upon the linear 
combination of variables 2-2’ and (il-$‘, respec- 
tively. Thus, we may write 

analogous to the comparable microscale condition 
(9a,b). 

2. GREEN’S FUNCTION FORMULATION 

Analogous to the case of species dispersion [I], it 
will prove useful to reformulate the microscale prob- 
lem (3)-(7) in terms of a Green’s function [2, $81. 
Define a quantity P (whose argument is as indicated 
below) as the kernel appearing in the following inte- 
grand : 

P Zn 
T( R, (p. z, f ) - To = 

J?.f 

4, 
AR’, dew, #‘) 

-cc 0 0 

x p(R, 4, z, t/R’, Cp’, =‘)[T(R’, &‘, z’, 0) - To] 

x R’ dR’ d& dz’. (I 5) 

By analogy to the comparable Green’s function super- 
position case for the material transport of a Brownian 
tracer particle (a ‘Brownion’), the quantity p’c’ 
P(R, 4, z, t] R’, $‘, z’) appearing in the above inte- 
grand may be regarded as representing the ‘con- 
ditional probability density’ of finding a thermal 
tracer (a ‘thermion’) at position (R, 4, z) at time f given 
that the thermion was originally introduced into the 
system at position (R’, @‘, z’) at time t = 0. Observe 
upon setting t = 0 in (15) that P is required to satisfy 
the initial impulsive heat-input condition, 

p(R,~)cfR,~)PtR,#,3,0lR’,(P’,~‘) 

= ~.6(R-R’)6(0-d,;)s(z-;‘j, (16) 

where 6 denotes a Dirac delta function of the indicated 
argument. This corresponds to a unit heat input (cf. 

(3Oa,b)). 
The microtransport equation (3) may be regarded 

as being of the operational form 

%T=O. (17) 

where Y is the linear operator 

Apply this operator to (15), and recognize that this 
(R, QI. z)-space operator commutes with integration 
over the primed variables (R’, (p’, z’). Thus, upon 
incorporating the initial condition (I 6) explicitly into 

P= P(R,&z,tlR’,qb’,z’) (20) 

= P(R,#-c#f,z-z’,tJR’). (21) 

As the respective choice of origins (namely 4 = 0 and 
z = 0) from which 4 and z are to be measured is 
arbitrary, no loss of generality arises from arbitrarily 
choosing 

4’ = 0, (22) 

z’ ZZ 0. (23) 

This choice corresponds to the initial introduction 
of a unit heat impulse at the point whose circular 
cylindrical coordinates are (R’, 0, 0). 

In place of (19) one may thus write, explicitly, 

+k$ f ~~(R-R’)6(9)6(;)6(1), (24) 

with P = P(R, (p, L-, t/R’). Conditions (4)-(7) require 
that, 

II { : ‘I2 P, 
LJP 
--} ~z --{O,O} as Z+ t-x 

(m = 0, I, 2.. . .), (25a,b) 

dP 
-=0 at R=Ro, 
dR 

and 

P($-t2n) = P(6) v (R, z,t) (27) 

P=O v(t<o). (28) 

Conditions (25a,b) are stricter than their temperature 
counterparts (4). They require that P tend to zero at 
infinity faster than geometrically (i.e. exponentially 
rapidly), in order that subsequent moments of P con- 
verge (cf. (31)). 

Physically, the system of equations (24)-(28) is such 
that p(R, Cp, z, t 1 R’) represents the temperature at the 
point (R, $J, z) at time t arising from the introduction 
of a unit amount of heat (cf. (30a,b)) at the point 
(R’, 0,O) at time t = 0 into the insulated system which 
is initially at zero temperature everywhere. 

Integration of (24) over the entire domain (2), to- 
gether with use of the boundary conditions yields 
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‘(,I 
pcPRdRdi$d; = o(t). (29) 

In turn. since the Dirac delta function is the dcrivativc 
of the Heavysidc unit step function [?. 48.3.41. inte- 
gration of the latter yields 

4 0 (t < 0). 
pcPR d R d4 dz = 

I (f>O). 

(30a.b) 

Thus, the quantity (whose volumetric density is) prP 

is conserved for all time. Coupled with the (implicitly 
assumed) nonnegative nature of P in conjunction with 
the unitary value of the integral in (30a,b). this shows 
that the quantity pc,P may bc thought of as being the 
probability density? for the thermion. 

3. MOMENTS OF THE PROBABILITY DENSITY 

3. I Loc~ul tnot?lcnt.s 
Define the local moments of P as 

I 

P (R,cb tlR')'g 
1)) . S. ?"P( R. ~4, z, I (R') dr 

(??I = 0, I ,‘....). (31) 

Differentiation with respect to I gives 

dz (32) 

as well as 

-fil[?J’ ‘PI’ , 

+ m(n2 ~ I ) 
S’ 

l”’ ‘Pdz = n~(m- l)P,,, :. (35) 
/ 

Hence, P,,,(R, c+h. I 1 R’) satisfies the partial diffcrcntial- 
recurrence equation 

f pcUmP,,, , + kni(m - 1) P,,, z 

in the cross-sectional domain (R. cb). together with 
the prc-initial condition 

P,,, = 0 vi(t < 0). (37) 

Additionally, P,,, satisfies the respective boundary and 
continuity conditions, 

ip,,, 
?R 

= 0 at R = R,, 

and 

(38) 

Direct substitution of (34) into the integrand of the P,,,(4+27[) = P/3,((b) ‘y’(R, t). (39) 

above gives the intermediate result 

3.2. Total tnotrwn ts 
/I(’ ‘;” = ; $(kR;ik j’, “‘Pd:) Define the total moments M,,, of P as the following 

~c~c;@trd average of the local moments P,,, : 

1 Differentiation with rcsoect to t gives 
+ ; CT,& R - R’)6(4)6(t). (33) 

with ii,,,,, the Kroncckcr delta. This can bc simplified 
by using the definition (31) while noting that inte- 
gration by parts yields In conjunction with (36)-(39) this yields 

dM,,, 2n 

j.i 

4 

= m 
df o (1 

j’l’ UP,,, , RdRdb 

s I 

- 1,* z”’ ‘Pdz = -mP,,, , (34) 
% 

, SIIl(M?- I) kP,,, ,RdRd4+6,,,,,f(r). (42) 

Observe that this formulation for M,,, is expressed 
entirely in terms of lower-order local moments P,,, , 

t Namely the conditional probability density for finding 
and P,,, 2, rather than in terms of P,, itself, as orig- 

the thcrmion at time / somewhere within the infinite domain inally in (40). Hence, information about the temporal 

(2) defining the system, given its initial introduction into the behavior of M,,, can be established without com- 
system at (R’, 0, 0) at time I = 0. parable knowledge of P,,, itself. 
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m=O 
Upon setting m = 0 in (42) we obtain 

dMn ~-~ -- = 6(t). 
dt 

(43) 

Consequently, 

(44a,b) 

Set m = 0 in (36))(39) to obtain the following 

system of equations governing the zero-order local 
moment P o : 

+ ; 6(R- R’)d($)&t), (45) 

PO = 0 V(t < O), (46) 

(47) 

f’n(4+27c) = f’n(4) v(R). (48) 

These equations possess no convective contribution. 
It can be shown [3,4] that for sufficiently long times 

defined by (IO), P,(R, 4, t/R’) possesses the steady- 

state solution Pz = PF(R, &J), such that, asymptot- 
ically. 

P,,(R,&tlR’) il: P,T(R,4)+exp, (49) 

where ‘exp’ denotes terms in R, 4, R’ and t that 
are exponentially attenuated in time. The steady-statr 
solution Pt is independent of R’, as indicated by its 

argument. Upon substituting (49) into the preceding 
set of equations governing P,,, it is found that P: 
constitutes the solution of the following boundary- 
value problem : 

;&R~)+&$(k~)=O. (50) 

SP; 

c?R 
=0 at R=R,, 

P,*(4+271) = P; (4) V(R). 

These possess the uniform solution 

(52) 

Pi = const., (53) 

independent of R and 4. The numerical value of this 
constant can be obtained from the definition (40) of 
M, together with (44a,b) and (49), which combine to 
show that 

2n 

ss 

% 
pcP,“‘RdRd$ = 1. 

0 0 
(54) 

(55) 

where we have defined the constant 

Zn R” 

Pd 

f 
pc’= A ‘S s 

pcRdRd4, (56) 
0 0 0 

in which 

A,, = nR; (57) 

is the cross-sectional area of the tube. 

m=l 
Set m = I in (42) and introduce the asymptotic 

expression (49) and (55) so as to obtain 

wherein u is the constant 

I ?n 

OE- ss 4 

&pc 0 

pcURdRd& (59) 
0 

Integration of (58) yields 

M, z C?it+B+exp, 

where L? is a constant of integration. 

From (40) we have by definition that 

(60) 

Zn 
M, = 

ss 

f% 
pcP,RdRd4. (61) 

0 ” 

As a result of the temporal behavior displayed by (60) 
the latter suggests (subject to a posteriori verification) 
the following asymptotic trial solution for P, : 

P,(R,4,tlR’) = PZ[flt+B(r,&)]+exp, (62) 

with P$ given by (55). Introduction of the latter into 
(61), together with use of the normalization condition 
(54), shows upon comparison of the result with (60) 
and use of (55) that the constant B is given by the 
expression 

pcBR dRd4. (63) 

To derive the equations governing the B-field, set 

111 = 1 in (36))(39) and use (62) to obtain 

B(4+2~) = B(4) V (RI, (66) 

with B(R, 4) uniquely determined only to within 
an arbitrary additive constant. As in the comparable 
material transport case [I], this lack of uniqueness is 
without physical consequence. 
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)?I = 2 

Put tn = 2 in (42) and use the asymptotic expan- 
sions (49) and (62) to obtain 

dM2 
- 2utp; 

dt - 
pcURdRdQ, 

Zn is ‘Cl 
+2(fp; pcBRdRd4 

0 0 

Zn 

jj 

R,, 
+2p,’ kRdRd4 

0 0 

?n 

+2p,’ 
jj 

R,, 
pc(CT- @BRdRdc$+exp. (67) 

0 ” 

With USC of (55) together with (59) and (63), respec- 
tively, the first integral is l?/Pp. whereas the second is 

B/P:. Hence, we obtain, 

dM> 
-drm 21 2i72t+2flB+2d+exp, 

where we have defined the constant 

giiM+$, 

in which 

(68) 

(69) 

(70) 

(71) 

wherein FM and RC are the respective constants 

kRdRdd, (72) 

and 

K1l 
pc(ibiI?)BRdRd~#~ (73) 

An alternative expression for kc may be derived as 

follows. Multiply (64) by B to obtain 

= pc(U- ii)B, (74) 

the right-hand side of the latter identity being exactly 
the term appearing in the integrand of (73). By ident- 

ity, 

and 

Rq~(k~)=~~~(Bk~)+~~(~~, 

whence the following expression for kc derives from 

(73) : 

The last two terms are identically zero as a consc- 

quence of (65) and (66) ; thus, 

(76) 

in which form the velocity field U does not appear 

explicttly, in contrast with the alternative formulation 
(73). 

Observe that since, by assumption, k > 0 (cf. (I)), 

equations (72) and (76) show K” and kc to be non- 
negative, whence 

1;” > 0. (77) 

F’ 3 0. (78) 

From (76), the equality sign in the latter applies if and 

only if B = constant for all (R, 4). As may be seen 

from the resulting homogeneous system of equations 
(64)-(66) defining the B-field this, in turn, occurs if 
and only if the velocity field U is spatially constant 

(i.e. identically zero) at all points (R, 4) in the cross- 
sectional domain. Use of (I) thereby shows that 

E -\’ > 0, (79) 

EC 20, (80) 

where equality holds in the latter only when U = 0 

everywhere in (R, 4). Hence, in (69), 

a > 0. (81) 

4. MACROSCOPIC FORMULATION 

Our ultimate goal is to demonstrate the applic- 

ability of the macrotransport description embodied in 
equations (1 I)-( 14a,b) of the cross-sectionally aver- 

aged thermal transport process, as well as to obtain 
explicit expressions for the three macroscale ther- 
mophysical properties i!?*. PC* and k* appearing in 
(11) in terms of the prescribed microscale data 

p(R, $J), c(R, 4), k(R,b), U(R,b) and the system 
geometry, e.g. the radius R,. Moreover, WC wish to 
operationally relate the macroscale temperature field 
F to the microscale temperature field T. To this end, 
define a macroscale Green’s function P as 

x P(R,@,z, tlR’)RdRd$, (82) 

where the constant PC* remains to be determined. 
Differentiate the above equation with respect to time, 



substitute from (24), and use the boundary conditions The goal is to asymptotically match these total 

(25a,b) to (27). This yields moments of Is with the corresponding total moments 

M, (40) of P: 

(m = 0, 1,2,. .). (85) 
in terms of the comparable inhomogeneous micro- 
scale data, namely U, pc and k. 

As a consequence of its definition (82), P appearing Differentiate (91) with respect to time, use the 

in (83) depends upon the initial lateral position R’ at model equation (89) for dp/iZJt, and make use of 

which the thermion was originally introduced ; how- boundary conditions (85) to obtain the following 

ever, for sufficiently long times, given by (10) (where- recurrence equation for the macroscale moments : 

by the thermion has had a chance to sample all points 
in the tube cross section many times over), P will dbTm 

asymptotically become independent of R’, and hence 
~dt- = mU*n;l,,_, + +f$m(m- 1)Si+2+6,06(t). 

be of the asymptotic form (93) 

P E P(z, t), (86) 

independent of R’.t 
m=O 

Subject to a posteriori verification via a moment- 
Setting m = 0 in (93) gives 

matching scheme [I], we assume-albeit asymptot- dn;l, 
ically for __ = 6(t). 

dt 
(94) 

Et/R;: >> 1 (87) 
Hence, upon integration, 

-that .? can be expressed in the macroscale con- 
vectivediffusive constitutive form 
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A,(t) N M,X(t)+exp as t + cm. (92) 

That this matching proves possible to dominant terms 
in t, ultimately furnishes a posteriori verification of 

the constitutive equation (88) and, concomitantly, the 
macrotransport equation (89), as well as also fur- 
nishing formulas explicitly expressing o*, fl and L* 

i 

0 
A” = 

(t < O), 

1 (t>O). (950) 

Comparison with (44a,b) gives, 

where PC*, l?* and h?* are constants to be determined.$ 
Together with (83) this yields the so-called model ther- n;r,=M, t/t, (96) 

mal macrotransport equation 
exactly! 

(89) 
m=l 

Set m = 1 in (93) to obtain 

and, from (82) and (28) 
da, 

P = 0 (t < 0). (90) 
dt = o*n;I, E @. (97) 

Define the total moments h;r, of the solution P of 
the above model equation as 

Integration yields 

&i,(t) Ef pc* s m. A, = Pt+C, (98) 
?P(z, t) dz (m = 0, 1,2,. . .). 

L 

(91) 
where C is a constant of integration. Comparison with 
(60) in the light of the requisite matching condition 
(92) thereby yields 

o* = rs (99) 

t In terms of primed variables this asymptotic behavior 
can be explicitly expressed as and 

P(z, f IR’, q5’, z’) = P(z, tlz’) as t -+ a. c = B. (100) 
1 Here, we are anticipating that the constant F* appearing 

here will be the same as that appearing in (82). Hence, from (59) 
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p+ = --L 
Zn ss 4 

A# 0 

pcUR dRdq5. (101) 
0 

m=2 

Set m = 2 in (93) to obtain 

Comparison with (68) in the limit t -+ a, together 

with use of (99) and (100). thereby yields 

G* 
(103) 

where 5( is defined in (69) et seq. 

4.1. Relutionship between r and T 

We wish to establish a relationship between an 
appropriately defined, transversely coarse-grained 
macroscale temperature field T(z, t) and its microscale 
precursor T(R, 4. z, t). For reasons that will sub- 
sequcntly become clear. it is convenient to define a 
quantity 7 by the expression (cf. (15) and (82)) 

T(z, t ) - T,, = A’- 
I 2.7 

IS./ 

% 
p(R’, &)c( R’. 4’) 

0 I,, 0 

x P(z, t 1 R’, 4’. :‘)[ T( R’, c,h’, z’, 0) 

- T,]R’dR’d@dr’. (104) 

where the explicit dependence of is upon 4’ and Z’ has 
been restored. Now, multiply (89) by the integrand of 
(104) sans the P term, integrate the resulting equation 
over (R’, 4’, z’), and note that the latter integration 
commutes with the requisite differentiations over z 
space. Equation (104) thereby yields 

subject to the requirement that 7 appearing therein 
satisfies the initial condition 

KC, 
T(z, 0) - To = p( R’. @)c(R’. 9’) 

x [T(R’,@,:.O)-T,]R’dR’d@. (106) 

As P satisfies (85a). we find from (104) that 

T+ T,, as 1~1 + m. (107) 

Furthermore, it follows directly from (15), (82) and 
(104) that the macroscale quantity Tmay be explicitly 
expressed in terms of its microscale precursor T as 

x[T(R,&z,t)-T,]RdRd+. (108) 

Finally, since we wish T appearing in the macro- 

transport equation (105) to represent the mean tcm- 
perature based upon internal energy considerations, 
WC choose 

1” * = f,r,: ( 109) 

moreover, upon using (69))(71) together with (103), 
we have in equation (105) that 

F* = L” +F”. (110) 

where k” and R“ are defined in terms of the microscalc 
data by (72) and either (73) or (76). 

4.2. Discussion 

Perhaps the only surprising feature of the preceding 
analysis is that. according to (103) (upon suppressing 
the asterisk superscripts), ?? = F/pi rather than k/pc; 
that is, the Taylor dispersion analysis clearly identifies 
the ratio of the averages rather than the average of 
the ratio as being the important thermophysical par- 

ameter characterizing the macroscale system. The ori- 
gin of this fact can ultimately be traced to the cir- 
cumstance that the conserved entity being transported 
is actually the internal energy u rather than the tem- 
perature T. these being related at the micro- and 
macroscales by the respective relations du = pcdT 
and dz.? = pcdi? Thus, given the defining macroscale 
constitutivc equations for the respective internal 
energy and thermal fluxes A_? relative to 0*, namely 
AiJ = - %%/?z and A.? = -k;??/& serving to respec- 

tively define the macroscale thermophysical par- 
ameters Cr and K. it naturally arises that Cc = l;iii? rather 
than k/pc,. 

5. SUMMARY 

For any prescribed initial temperature distribution 
F(‘(I, 0) (satisfying (112) below), the adiabatic mean 
axial dispersion of internal energy within a circular 

cylindrical tube of radius R,, through which a fluid 
flows may be modeled by the thermal macrotransport 
equation, 

(III) 

p(z, t) + To = const. as :+_frx, Vt. (112) 

In these equations, the constant macrotransport par- 
ameters fl* and %* arc related to the comparable 

microscale velocity and thermal data U, p, c and k--~ 
each generally functions of (R, $)-by the expressions 

p(.iJRdRd~, (113) 

in which 

A,, 
pcR dRdqb (115) 
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and 

p = EM+FC, 

with the B-field defined by (64)-(66). The effective 

(116) 
conductivities FM and 6’ represent the respective 
molecular (‘diffusive’) and convective contributions. 
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